Search results

Search for "TiO2 nanotube arrays" in Full Text gives 14 result(s) in Beilstein Journal of Nanotechnology.

Photoelectrochemical water oxidation over TiO2 nanotubes modified with MoS2 and g-C3N4

  • Phuong Hoang Nguyen,
  • Thi Minh Cao,
  • Tho Truong Nguyen,
  • Hien Duy Tong and
  • Viet Van Pham

Beilstein J. Nanotechnol. 2022, 13, 1541–1550, doi:10.3762/bjnano.13.127

Graphical Abstract
  • Province, Vietnam 10.3762/bjnano.13.127 Abstract TiO2 nanotube arrays (TNAs) have been studied for photoelectrochemical (PEC) water splitting. However, there are two major barriers of TNAs, including a low photo-response and the fast charge carrier recombination in TNAs, leading to poor photocatalytic
  • semiconductors, TiO2 nanotube arrays (TNAs) of 2–100 nm in diameter and 1–2 μm in length, are often used for efficient PEC applications exploiting advantages such as chemical stability, less toxicity and suitable cost [18][19][20][21]. However, there are two disadvantages affecting directly their photocatalytic
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
PDF
Album
Review
Published 11 Nov 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • integrin clustering and focal adhesion development. In this context, Chen et al. employed the adsorption of functional proteins (bone morphogenetic protein 2 and sclerostin antibody) to modify TiO2 nanotube arrays to repair bone fractures [35]. The PC alters biodistribution, biological identity and
PDF
Album
Review
Published 14 Feb 2022

Highly sensitive detection of estradiol by a SERS sensor based on TiO2 covered with gold nanoparticles

  • Andrea Brognara,
  • Ili F. Mohamad Ali Nasri,
  • Beatrice R. Bricchi,
  • Andrea Li Bassi,
  • Caroline Gauchotte-Lindsay,
  • Matteo Ghidelli and
  • Nathalie Lidgi-Guigui

Beilstein J. Nanotechnol. 2020, 11, 1026–1035, doi:10.3762/bjnano.11.87

Graphical Abstract
  • soaking in HAuCl4 solution, as composite SERS substrates for the detection of methylene blue. They reported a successful SERS enhancement, compared to bare Si substrates, with an enhancement factor of ca. 106 and a lower detection limit of 100 nM. Li et al. [15] studied Au NP-coated TiO2 nanotube arrays
PDF
Album
Full Research Paper
Published 14 Jul 2020

Effect of Ag loading position on the photocatalytic performance of TiO2 nanocolumn arrays

  • Jinghan Xu,
  • Yanqi Liu and
  • Yan Zhao

Beilstein J. Nanotechnol. 2020, 11, 717–728, doi:10.3762/bjnano.11.59

Graphical Abstract
  • photolithography and the template method by Sung et al. [30]. In this case, Ag particles were loaded on the outside of the nanocolumns by magnetron sputtering, and the catalysis was carried out at a sputtering time of 30 min. Besides, Jani et al. [31] studied the preparation of TiO2 nanotube arrays by anodization
PDF
Album
Full Research Paper
Published 05 May 2020

Uniform Sb2S3 optical coatings by chemical spray method

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Ilona Oja Acik,
  • Arvo Mere and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 198–210, doi:10.3762/bjnano.10.18

Graphical Abstract
  • –Weber island growth of amorphous Sb2S3 (and in some cases leaf-like grains of polycrystalline Sb2S3) have been observed in Sb2S3 layers grown by chemical bath deposition on glass [47][48], In2O3/Sn (ITO) [49], planar TiO2 [16] and TiO2 nanotube arrays [50], by sequential deposition [51] and spin coating
PDF
Album
Supp Info
Full Research Paper
Published 15 Jan 2019

Amorphous NixCoyP-supported TiO2 nanotube arrays as an efficient hydrogen evolution reaction electrocatalyst in acidic solution

  • Yong Li,
  • Peng Yang,
  • Bin Wang and
  • Zhongqing Liu

Beilstein J. Nanotechnol. 2019, 10, 62–70, doi:10.3762/bjnano.10.6

Graphical Abstract
  • attention due to their synergistic effect for improving the hydrogen evolution reaction as compared to monometallic phosphides. In this work, NiCoP modified hybrid electrodes were fabricated by a one-step electrodeposition process with TiO2 nanotube arrays (TNAs) as a carrier. X-ray diffraction
  • unstable under acidic conditions. One effective way to improve their stability is with an appropriate support material. Compared to the nickel foam or other substrates [19][23][24], TiO2 nanotube arrays prepared by anodization are favorable for the loading of catalysts and the fast transfer of electrons
  • aqueous solution, the NixCoyP/TNAs electrodes presented enhanced electrocatalytic activity and robust stability after incorporating Co into NiP. Experimental Preparation of NixCoyP/TNA electrodes The TiO2 nanotube arrays used here were prepared using an electrochemical anodization technique according to
PDF
Album
Supp Info
Full Research Paper
Published 07 Jan 2019

A visible-light-controlled platform for prolonged drug release based on Ag-doped TiO2 nanotubes with a hydrophobic layer

  • Caihong Liang,
  • Jiang Wen and
  • Xiaoming Liao

Beilstein J. Nanotechnol. 2018, 9, 1793–1801, doi:10.3762/bjnano.9.170

Graphical Abstract
  • the oxygen atoms of ZnO. Figure 5 demonstrates the water contact angles (CAs) of the different treated samples. As-grown TiO2 nanotube arrays presents total hydrophilicity with a water CA of 30° (Figure 5a) without any surficial alteration [2][3]. Besides, TNTs modified with Ag (Figure 5b) and ZnO-Ag
PDF
Album
Full Research Paper
Published 14 Jun 2018

Review on optofluidic microreactors for artificial photosynthesis

  • Xiaowen Huang,
  • Jianchun Wang,
  • Tenghao Li,
  • Jianmei Wang,
  • Min Xu,
  • Weixing Yu,
  • Abdel El Abed and
  • Xuming Zhang

Beilstein J. Nanotechnol. 2018, 9, 30–41, doi:10.3762/bjnano.9.5

Graphical Abstract
  • splitting and CO2 reduction [80], but significant progress had already been made before it was combined with the optofluidics [81]. Park et al. developed CdS quantum-dot-sensitized TiO2 nanotube arrays for the photo-regeneration of nicotinamide cofactors [82]. They also used SiO2-supported CdS quantum dots
PDF
Album
Review
Published 04 Jan 2018

Fast diffusion of silver in TiO2 nanotube arrays

  • Wanggang Zhang,
  • Yiming Liu,
  • Diaoyu Zhou,
  • Hui Wang,
  • Wei Liang and
  • Fuqian Yang

Beilstein J. Nanotechnol. 2016, 7, 1129–1140, doi:10.3762/bjnano.7.105

Graphical Abstract
  • -dimensional structures. To increase the electric performance of TiO2, TiO2-based materials have been developed by incorporating metal nanoparticles in TiO2 nanotube arrays, using electrochemical deposition [21], irradiation of microwave [22], reduction [23], and sol–gel process [24], which involve the use of
  • aqueous solutions. In addition, the technique of magnetron sputtering has been used to deposit Ag nanostructures on the surface of TiO2 nanotube arrays. It is worth mentioning that Enachi et al. [25] heat-treated the TiO2 nanotube arrays after the deposition of Ag film of 50 nm on the top surface of TiO2
  • nanotube arrays and observed the formation of Ag nanodots on the top surface of the TiO2 nanotube arrays. However, they did not examine and discuss whether there exist Ag nanodots inside the TiO2 nanotubes or on the surface of the TiO2 nanotubes. The microstructures of TiO2-based materials depend on the
PDF
Album
Supp Info
Full Research Paper
Published 03 Aug 2016

Photocatalysis

  • Rong Xu

Beilstein J. Nanotechnol. 2014, 5, 1071–1072, doi:10.3762/bjnano.5.119

Graphical Abstract
  • dots integrated with TiO2 nanotube arrays, and carbon nitride, have been explored to construct photocatalysts with enhanced performances. On the other hand, molecular catalysts have an advantage in design flexibility and structural tunability. A contribution based on the investigation of molecular
PDF
Editorial
Published 16 Jul 2014

Optical modeling-assisted characterization of dye-sensitized solar cells using TiO2 nanotube arrays as photoanodes

  • Jung-Ho Yun,
  • Il Ku Kim,
  • Yun Hau Ng,
  • Lianzhou Wang and
  • Rose Amal

Beilstein J. Nanotechnol. 2014, 5, 895–902, doi:10.3762/bjnano.5.102

Graphical Abstract
PDF
Album
Full Research Paper
Published 24 Jun 2014

Nanostructure sensitization of transition metal oxides for visible-light photocatalysis

  • Hongjun Chen and
  • Lianzhou Wang

Beilstein J. Nanotechnol. 2014, 5, 696–710, doi:10.3762/bjnano.5.82

Graphical Abstract
  • CdSe to TiO2 via oxygen vacancy states mediated by N-doping [39][40]. There are also a large number of heterostructures in literature consisting of quantum dots and transition metal oxides, for instance, CdS/CdSe co-sensitized TiO2 [41], CdTe or CdTe/CdSe quantum dots on TiO2 nanotube arrays [42][43
  • ) forming an electron–hole puddle in a g-C3N4-supported graphene monolayer [100]. Song and co-workers observed an enhancement of the photoconversion efficiency up to 15 times for a TiO2 nanotube composite electrode decorated by graphene oxide (GO) in comparison with pristine TiO2 nanotube arrays under
PDF
Album
Review
Published 23 May 2014

A visible-light-driven composite photocatalyst of TiO2 nanotube arrays and graphene quantum dots

  • Donald K. L. Chan,
  • Po Ling Cheung and
  • Jimmy C. Yu

Beilstein J. Nanotechnol. 2014, 5, 689–695, doi:10.3762/bjnano.5.81

Graphical Abstract
  • Donald K. L. Chan Po Ling Cheung Jimmy C. Yu Department of Chemistry and Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China 10.3762/bjnano.5.81 Abstract TiO2 nanotube arrays are well-known efficient UV-driven photocatalysts. The
  • incorporation of graphene quantum dots could extend the photo-response of the nanotubes to the visible-light range. Graphene quantum dot-sensitized TiO2 nanotube arrays were synthesized by covalently coupling these two materials. The product was characterized by Fourier-transform infrared spectrometry (FTIR
  • light irradiation. Keywords: anodic oxidation; graphene quantum dots; photocatalyst; photodegradation; TiO2 nanotube arrays; Introduction Semiconductor-mediated photocatalysis is a promising technique for the conversion of solar energy as well as degradation of organic pollutants in air and water [1
PDF
Album
Supp Info
Full Research Paper
Published 22 May 2014
Other Beilstein-Institut Open Science Activities